A Uniied Approach to Pca, Pls, Mlr and Cca
نویسندگان
چکیده
This paper presents a novel algorithm for analysis of stochastic processes. The algorithm can be used to nd the required solutions in the cases of principal component analysis (PCA), partial least squares (PLS), canonical correlation analysis (CCA) or multiple linear regression (MLR). The algorithm is iterative and sequential in its structure and uses on-line stochastic approximation to reach an equilibrium point. A quotient between two quadratic forms is used as an energy function and it is shown that the equilibrium points constitute solutions to the generalized eigenproblem.
منابع مشابه
Ridge-Penalty Regularization for Kernel-CCA
CCA and Kernel-CCA are powerful statistical tools that have been successfully employed for feature extraction. However, when working in high-dimensional signal spaces, care has to be taken to avoid overfitting. This paper discusses the influence of ridge penalty regularization on kernel-CCA by relating it to multivariate linear regression(MLR) and partial least squares(PLS). Experimental result...
متن کاملLearning Multidimensional Signal Processing
The subject of this dissertation is to show how learning can be used for multidimensional signal processing, in particular computer vision. Learning is a wide concept, but it can generally be defined as a system’s change of behaviour in order to improve its performance in some sense. Learning systems can be divided into three classes: supervised learning, reinforcement learning and unsupervised...
متن کاملPrediction of ozone concentration in ambient air using multivariate methods.
Multivariate statistical methods including pattern recognition (Principal Component Analysis--PCA) and modeling (Multiple Linear Regression--MLR, Partial Least Squares--PLS, as well as Principal Component Regression--PCR) methods were carried out to evaluate the state of ambient air in Miskolc (second largest city in Hungary). Samples were taken from near the ground at a place with an extremely...
متن کاملPartial Least Squares for Discrimination
Partial least squares (PLS) was not originally designed as a tool for statistical discrimination. In spite of this, applied scientists routinely use PLS for classification and there is substantial empirical evidence to suggest that it performs well in that role. The interesting question is: why can a procedure that is principally designed for overdetermined regression problems locate and emphas...
متن کاملEvaluation of dimensionality reduction methods for image auto-annotation
Image auto-annotation [3, 4] is one of the most important challenges in computer vision. The goal of this task is to predict multiple keywords for generic images captured in real environments (Fig. 1). Recent studies have shown that a simple nearest neighbor-like approach is quite successful. However, while this approach is successful from the viewpoint of annotation accuracy, its computational...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1992